
Calculus A for Economics

Solutions to Exercise Number 8

1) f(x) is a polynomial and hence it is continuous and differentiable at any point. We

have f(−1) = f(2) = 0. Therefore all the conditions of Rolle’s Theorem are satisfied and

hence there is a point c ∈ (−1, 2) such that f ′(c) = 0. You were not asked to find the point

c, but here it is easy to do it. Indeed, we have f ′(x) = 3x2 + 8x− 7 and it is easy to check

that one of the solutions to the quadratic equation 3x2 +8x−7 = 0 is in the interval (−1, 2).

2) We have f(±1) = 2−(±1)2

(±1)4
= 1 and hence f(1) = f(−1). Also, for x 6= 0, f ′(x) =

x4(−2x)−(2−x2)4x3

x8 = 2x5−8x3

x8 = 2(x−2)(x+2)
x5 . Hence f ′(x) is defined for all x 6= 0, and f ′(x) 6= 0

for all 0 6= x ∈ [−1, 1]. There is no contradiction to Rolle’s Theorem because f(x) is not

defined at x = 0 and hence clearly not continuous there.

3) Let p(x) = a0x
n + · · · + an−1x. It is given that p(x0) = 0 for some x0 > 0. Also,

p(0) = 0. Since p(x) is a polynomial it is continuous and differentiable for all x. Therefore

we may apply Rolle’s Theorem to the interval [0, x0], to deduce that there is x1 ∈ (0, x0)

such that p′(x1) = 0. But p′(x) = na0x
n−1 + (n − 1)a1x

n−2 + · · · + an−1. This is what we

needed to prove.

4) Assume that f(x) = x3 − 3x + c vanish at the points 0 < x1 < x2 < 1. That is

f(x1) = f(x2) = 0. Since f(x) is a polynomial it is continuous and differentiable for all x.

Therefore we may apply Rolle’s Theorem to the interval [x1, x2], to deduce that there is a

point x1 < x3 < x2 such that f ′(x3) = 0. Since 0 < x1 < x2 < 1 then 0 < x3 < 1. We have

f ′(x) = 3x2− 3 = 3(x− 1)(x + 1) which is clearly nonzero for all points 0 < x < 1. Thus we

derived a contradiction, and hence f(x) has no two distinct zeros in the interval (0, 1).

5) The function is clearly continuous and differentiable at the interval [1, 4]. Hence the

mean value Theorem holds. Thus, there exists a point c ∈ (1, 4) such that f ′(c) = f(4)−f(1)
4−1

=

−3. To find that point we compute f ′(x) = 3
2
√

x
− 4. Thus f ′(x) = −3 is equivalent to

3
2
√

x
− 4 = −3, or 3 = 2

√
x. Hence x = 9

4
and thats our point c.
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6) The conditions of the mean value Theorem are satisfied for all real points. Choose

x1 < x2, and apply the theorem in the interval [x1, x2]. Thus, there exists a point c ∈ [x1, x2]

such that f ′(c) = f(x2)−f(x1)
x2−x1

. Hence f(x2)− f(x1) = f ′(c)(x2− x1). Hence |f(x2)− f(x1)| =
|f ′(c)||(x2 − x1)| ≤ |x2 − x1| where the last inequality follows from the fact that |f ′(x)| ≤ 1

for all x.

7) Let f(x) = lnx, and consider the interval [b, a]. Since 0 < b ≤ a the function

f(x) = lnx is continuous and differentiable at that interval, and hence the mean value

Theorem holds. Thus, there exists b < c < a such that f ′(c) = f(a)−f(b)
a−b

, or 1
c

= lna−lnb
a−b

, or
a−b

c
= lna

b
. Since b < c < a then 1

a
< 1

c
< 1

b
, or a−b

a
≤ a−b

c
≤ a−b

b
. But lna

b
= a−b

c
.

8) Consider the function f(x) = xn. It is continuous and differentiable in any interval,

and hence the mean value Theorem holds. We apply it to the interval [b, a] to deduce that

there is a pint b < c < a such that f ′(c) = f(a)−f(b)
a−b

, or ncn−1 = an−bn

a−b
. Since b < c < a and

n is a natural number then bn−1 < cn−1 < an−1. From the identity cn−1 = an−bn

n(a−b)
we obtain

bn−1 < an−bn

n(a−b)
< an−1, which is clearly equivalent to the one we need to prove.

Recall that a point c is a possible extreme point for a function f(x), if either f ′(x) = 0

at x = c, or f(x) is defined at x = c but f ′(x) does not exist at x = c.

9) a) We have y′ = 3x2 + 3 = 3(x2 + 1). Thus f ′(x) is positive for all x. Also, since f(x)

is polynomial it is differentiable for all x. Thus f(x) has no extreme points.

b) We have y′ = 2(1 − x)(−1)(1 + x) + (1 − x)2 · 1 = −(1 − x)(1 + 3x). Thus f ′(x) = 0

implies x = 1 or x = −1
3
. Since f(x) is a polynomial it is differentiable for all x. Thus, these

are the only possible extreme points for f(x).

c) We have

f(x) =
1

|x− 2| =

{
1

x−2
, x > 2

− 1
x−2

, x < 2
f ′(x) =

{
− 1

(x−2)2
, x > 2

1
(x−2)2

, x < 2

Hence f ′(x) is never zero. Clearly, f(x) is not differentiable at x = 2, but it is also not

defined at that point. Hence x = 2 is not a possible extreme point. Thus, f(x) has no

extreme points.

d) We have

f(x) = |x2 − 16| =
{

x2 − 16, x ≤ −4, x ≥ 4

−(x2 − 16), −4 < x < 4
f ′(x) =

{
2x, x < −4, x > 4

−2x, −4 < x < 4

Hence f ′(x) = 0 if and only if x = 0. Also, f(x) is not differentiable at x = ±4. However,

f(x) is defined at these two points. Hence the possible extreme points for f(x) are x = 0,±4.
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e) The domain of definition is x2 + 1 > 0 and hence the function is defined and differ-

entiable for all x. We have f ′(x) = 1 − 1
x2+1

· 2x. The equation f ′(x) = 0 is equivalent to
2x

1+x2 = 1 or (1−2x+x2) = 0 or (x−1)2 = 0. Hence there is only one possible extreme point

and it is x = 1.

f) The function is defined for all x > 0 and is differentiable at that domain. We have

f ′(x) = (2x − 2)lnx + (x2 − 2x) 1
x
− 3

2
· 2x + 4 = 2(x − 1)lnx − 2x + 2 = 2(x − 1)(lnx − 1).

Thus f ′(x) = 0 has two possible solutions. First x = 1 and second lnx = 1 or x = e. Thus

the two possible extreme points are x = 1, e.

g) We have

f(x) =
1

x + 1
− 1

x + 2
=

1

(x + 1)(x + 2)

This is a rational function and hence it is defined and differentiable for all points except

x = 1, 2. We have

f ′(x) =
−1

(x + 1)2
+

1

(x + 2)2
= − 2x + 3

(x + 1)2(x + 2)2

Therefore f ′(x) = 0 is equivalent to 2x+3 = 0 or x = −3
2

which is the only possible extreme

point. Clearly f ′(x) is not defined at x = 1, 2, but these are not possible extreme points

because the function f(x) is not defined at these points.

10) a) This follows from the following Theorem which was stated in Exercise 5.

Theorem: Let f(x) be a continuous function in the closed interval [a, b]. Assume that

f(a)f(b) ≤ 0. Then there exist a point a ≤ c ≤ b such that f(c) = 0.

Hence, if g(a)g(b) ≤ 0 then there would be a point a < c < b such that g(c) = 0. But then

f(c) = 0, and this is a contradiction to the fact that the points a and b are adjacent.

b) Apply Roll’s Theorem to the interval [a, b]. Indeed, since a and b are roots of f(x), then

f(a) = f(b) = 0 and since f(x) is a polynomial, all the conditions of the Theorem hold.

11) The function f(x) =
√

x is an example. Indeed, f ′(x) = 1
2
√

x
.

12) Apply the mean value Theorem to the function f(x) =
√

x in the interval [64, 66].

Clearly all the conditions of the Theorem hold. Since f ′(x) = 1
2
√

x
we deduce that there is a

point 64 < c < 66 such that

1

2
√

c
=

f(66)− f(64)

66− 64
=

√
66− 8

2

Hence 1√
c

=
√

66 − 8. Since 64 < c, then 8 <
√

c, or 1√
c

< 1
8
. Hence

√
66 − 8 < 1

8
. Since

c < 66 < 81 then 1
9

< 1√
c

and hence 1
9

<
√

66− 8.
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