Calculus A for Economics

Solutions to Exercise Number 8

1) $f(x)$ is a polynomial and hence it is continuous and differentiable at any point. We have $f(-1)=f(2)=0$. Therefore all the conditions of Rolle's Theorem are satisfied and hence there is a point $c \in(-1,2)$ such that $f^{\prime}(c)=0$. You were not asked to find the point c, but here it is easy to do it. Indeed, we have $f^{\prime}(x)=3 x^{2}+8 x-7$ and it is easy to check that one of the solutions to the quadratic equation $3 x^{2}+8 x-7=0$ is in the interval $(-1,2)$.
2) We have $f(\pm 1)=\frac{2-(\pm 1)^{2}}{(\pm 1)^{4}}=1$ and hence $f(1)=f(-1)$. Also, for $x \neq 0, f^{\prime}(x)=$ $\frac{x^{4}(-2 x)-\left(2-x^{2}\right) 4 x^{3}}{x^{8}}=\frac{2 x^{5}-8 x^{3}}{x^{8}}=\frac{2(x-2)(x+2)}{x^{5}}$. Hence $f^{\prime}(x)$ is defined for all $x \neq 0$, and $f^{\prime}(x) \neq 0$ for all $0 \neq x \in[-1,1]$. There is no contradiction to Rolle's Theorem because $f(x)$ is not defined at $x=0$ and hence clearly not continuous there.
3) Let $p(x)=a_{0} x^{n}+\cdots+a_{n-1} x$. It is given that $p\left(x_{0}\right)=0$ for some $x_{0}>0$. Also, $p(0)=0$. Since $p(x)$ is a polynomial it is continuous and differentiable for all x. Therefore we may apply Rolle's Theorem to the interval $\left[0, x_{0}\right]$, to deduce that there is $x_{1} \in\left(0, x_{0}\right)$ such that $p^{\prime}\left(x_{1}\right)=0$. But $p^{\prime}(x)=n a_{0} x^{n-1}+(n-1) a_{1} x^{n-2}+\cdots+a_{n-1}$. This is what we needed to prove.
4) Assume that $f(x)=x^{3}-3 x+c$ vanish at the points $0<x_{1}<x_{2}<1$. That is $f\left(x_{1}\right)=f\left(x_{2}\right)=0$. Since $f(x)$ is a polynomial it is continuous and differentiable for all x. Therefore we may apply Rolle's Theorem to the interval $\left[x_{1}, x_{2}\right.$], to deduce that there is a point $x_{1}<x_{3}<x_{2}$ such that $f^{\prime}\left(x_{3}\right)=0$. Since $0<x_{1}<x_{2}<1$ then $0<x_{3}<1$. We have $f^{\prime}(x)=3 x^{2}-3=3(x-1)(x+1)$ which is clearly nonzero for all points $0<x<1$. Thus we derived a contradiction, and hence $f(x)$ has no two distinct zeros in the interval $(0,1)$.
5) The function is clearly continuous and differentiable at the interval [1, 4]. Hence the mean value Theorem holds. Thus, there exists a point $c \in(1,4)$ such that $f^{\prime}(c)=\frac{f(4)-f(1)}{4-1}=$ -3 . To find that point we compute $f^{\prime}(x)=\frac{3}{2 \sqrt{x}}-4$. Thus $f^{\prime}(x)=-3$ is equivalent to $\frac{3}{2 \sqrt{x}}-4=-3$, or $3=2 \sqrt{x}$. Hence $x=\frac{9}{4}$ and thats our point c.
6) The conditions of the mean value Theorem are satisfied for all real points. Choose $x_{1}<x_{2}$, and apply the theorem in the interval [x_{1}, x_{2}]. Thus, there exists a point $c \in\left[x_{1}, x_{2}\right]$ such that $f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$. Hence $f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right)$. Hence $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=$ $\left|f^{\prime}(c)\right|\left|\left(x_{2}-x_{1}\right)\right| \leq\left|x_{2}-x_{1}\right|$ where the last inequality follows from the fact that $\left|f^{\prime}(x)\right| \leq 1$ for all x.
7) Let $f(x)=\ln x$, and consider the interval $[b, a]$. Since $0<b \leq a$ the function $f(x)=\ln x$ is continuous and differentiable at that interval, and hence the mean value Theorem holds. Thus, there exists $b<c<a$ such that $f^{\prime}(c)=\frac{f(a)-f(b)}{a-b}$, or $\frac{1}{c}=\frac{\ln a-\ln b}{a-b}$, or $\frac{a-b}{c}=\ln \frac{a}{b}$. Since $b<c<a$ then $\frac{1}{a}<\frac{1}{c}<\frac{1}{b}$, or $\frac{a-b}{a} \leq \frac{a-b}{c} \leq \frac{a-b}{b}$. But $\ln \frac{a}{b}=\frac{a-b}{c}$.
8) Consider the function $f(x)=x^{n}$. It is continuous and differentiable in any interval, and hence the mean value Theorem holds. We apply it to the interval $[b, a]$ to deduce that there is a pint $b<c<a$ such that $f^{\prime}(c)=\frac{f(a)-f(b)}{a-b}$, or $n c^{n-1}=\frac{a^{n}-b^{n}}{a-b}$. Since $b<c<a$ and n is a natural number then $b^{n-1}<c^{n-1}<a^{n-1}$. From the identity $c^{n-1}=\frac{a^{n}-b^{n}}{n(a-b)}$ we obtain $b^{n-1}<\frac{a^{n}-b^{n}}{n(a-b)}<a^{n-1}$, which is clearly equivalent to the one we need to prove.

Recall that a point c is a possible extreme point for a function $f(x)$, if either $f^{\prime}(x)=0$ at $x=c$, or $f(x)$ is defined at $x=c$ but $f^{\prime}(x)$ does not exist at $x=c$.
9) a) We have $y^{\prime}=3 x^{2}+3=3\left(x^{2}+1\right)$. Thus $f^{\prime}(x)$ is positive for all x. Also, since $f(x)$ is polynomial it is differentiable for all x. Thus $f(x)$ has no extreme points.
b) We have $y^{\prime}=2(1-x)(-1)(1+x)+(1-x)^{2} \cdot 1=-(1-x)(1+3 x)$. Thus $f^{\prime}(x)=0$ implies $x=1$ or $x=-\frac{1}{3}$. Since $f(x)$ is a polynomial it is differentiable for all x. Thus, these are the only possible extreme points for $f(x)$.
c) We have

$$
f(x)=\frac{1}{|x-2|}=\left\{\begin{array}{ll}
\frac{1}{x-2}, & x>2 \\
-\frac{1}{x-2}, & x<2
\end{array} \quad f^{\prime}(x)= \begin{cases}-\frac{1}{(x-2)^{2}}, & x>2 \\
\frac{1}{(x-2)^{2}}, & x<2\end{cases}\right.
$$

Hence $f^{\prime}(x)$ is never zero. Clearly, $f(x)$ is not differentiable at $x=2$, but it is also not defined at that point. Hence $x=2$ is not a possible extreme point. Thus, $f(x)$ has no extreme points.
d) We have

$$
f(x)=\left|x^{2}-16\right|=\left\{\begin{array}{ll}
x^{2}-16, & x \leq-4, x \geq 4 \\
-\left(x^{2}-16\right), & -4<x<4
\end{array} \quad f^{\prime}(x)= \begin{cases}2 x, & x<-4, x>4 \\
-2 x, & -4<x<4\end{cases}\right.
$$

Hence $f^{\prime}(x)=0$ if and only if $x=0$. Also, $f(x)$ is not differentiable at $x= \pm 4$. However, $f(x)$ is defined at these two points. Hence the possible extreme points for $f(x)$ are $x=0, \pm 4$.
e) The domain of definition is $x^{2}+1>0$ and hence the function is defined and differentiable for all x. We have $f^{\prime}(x)=1-\frac{1}{x^{2}+1} \cdot 2 x$. The equation $f^{\prime}(x)=0$ is equivalent to $\frac{2 x}{1+x^{2}}=1$ or $\left(1-2 x+x^{2}\right)=0$ or $(x-1)^{2}=0$. Hence there is only one possible extreme point and it is $x=1$.
f) The function is defined for all $x>0$ and is differentiable at that domain. We have $f^{\prime}(x)=(2 x-2) \ln x+\left(x^{2}-2 x\right) \frac{1}{x}-\frac{3}{2} \cdot 2 x+4=2(x-1) \ln x-2 x+2=2(x-1)(\ln x-1)$. Thus $f^{\prime}(x)=0$ has two possible solutions. First $x=1$ and second $\ln x=1$ or $x=e$. Thus the two possible extreme points are $x=1, e$.
g) We have

$$
f(x)=\frac{1}{x+1}-\frac{1}{x+2}=\frac{1}{(x+1)(x+2)}
$$

This is a rational function and hence it is defined and differentiable for all points except $x=1,2$. We have

$$
f^{\prime}(x)=\frac{-1}{(x+1)^{2}}+\frac{1}{(x+2)^{2}}=-\frac{2 x+3}{(x+1)^{2}(x+2)^{2}}
$$

Therefore $f^{\prime}(x)=0$ is equivalent to $2 x+3=0$ or $x=-\frac{3}{2}$ which is the only possible extreme point. Clearly $f^{\prime}(x)$ is not defined at $x=1,2$, but these are not possible extreme points because the function $f(x)$ is not defined at these points.
10) a) This follows from the following Theorem which was stated in Exercise 5.

Theorem: Let $f(x)$ be a continuous function in the closed interval $[a, b]$. Assume that $f(a) f(b) \leq 0$. Then there exist a point $a \leq c \leq b$ such that $f(c)=0$.
Hence, if $g(a) g(b) \leq 0$ then there would be a point $a<c<b$ such that $g(c)=0$. But then $f(c)=0$, and this is a contradiction to the fact that the points a and b are adjacent. b) Apply Roll's Theorem to the interval $[a, b]$. Indeed, since a and b are roots of $f(x)$, then $f(a)=f(b)=0$ and since $f(x)$ is a polynomial, all the conditions of the Theorem hold.
11) The function $f(x)=\sqrt{x}$ is an example. Indeed, $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$.
12) Apply the mean value Theorem to the function $f(x)=\sqrt{x}$ in the interval $[64,66]$. Clearly all the conditions of the Theorem hold. Since $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ we deduce that there is a point $64<c<66$ such that

$$
\frac{1}{2 \sqrt{c}}=\frac{f(66)-f(64)}{66-64}=\frac{\sqrt{66}-8}{2}
$$

Hence $\frac{1}{\sqrt{c}}=\sqrt{66}-8$. Since $64<c$, then $8<\sqrt{c}$, or $\frac{1}{\sqrt{c}}<\frac{1}{8}$. Hence $\sqrt{66}-8<\frac{1}{8}$. Since $c<66<81$ then $\frac{1}{9}<\frac{1}{\sqrt{c}}$ and hence $\frac{1}{9}<\sqrt{66}-8$.

